Orthogonal Matrices \& Symmetric Matrices Hung-yi Lee

Outline

Orthogonal Matrices

- Reference: Chapter 7.5

Symmetric Matrices

- Reference: Chapter 7.6

Norm-preserving

- A linear operator is norm-preserving if

$$
\|T(u)\|=\|u\| \quad \text { For all } u
$$

Example: linear operator T on \mathcal{R}^{2} that rotates a vector by θ.
\Rightarrow Is T norm-preserving?

$$
A_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Example: linear operator T is refection
$\Rightarrow \mathrm{Is} T$ norm-preserving?

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Norm-preserving

- A linear operator is norm-preserving if

$$
\|T(u)\|=\|u\| \quad \text { For all } u
$$

Example: linear operator T is projection $\Rightarrow \mathrm{Is} T$ norm-preserving?

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Example: linear operator U on \mathfrak{R}^{n} that has an eigenvalue $\lambda \neq \pm 1$.

Orthogonal Matrix

- An nxn matrix Q is called an orthogonal matrix (or simply orthogonal) if the columns of Q form an orthonormal basis for R^{n}
- Orthogonal operator: standard matrix is an orthogonal matrix.

Norm－preserving

－Necessary conditions：

Norm－ preserving

Orthogonal Matrix

？？？
Linear operator Q is norm－preserving

$$
\left\|\mathbf{q}_{j}\right\|=1
$$

$$
\left\|\mathbf{q}_{j}\right\|=\left\|Q \mathbf{e}_{j}\right\|=\left\|\mathbf{e}_{j}\right\|
$$

\mathbf{q}_{i} and \mathbf{q}_{j} are orthogonal

異式定理

$$
\left\|\mathbf{q}_{i}+\mathbf{q}_{j}\right\|^{2}=\left\|Q \mathbf{e}_{i}+Q \mathbf{e}_{j}\right\|^{2}=\left\|Q\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right\|^{2}=\left\|\mathbf{e}_{i}+\mathbf{e}_{j}\right\|^{2}=2=\left\|\mathbf{q}_{i}\right\|^{2}+\left\|\mathbf{q}_{j}\right\|^{2}
$$

Those properties are used to check orthogonal matrix.

Orthogonal Matrix

- Q is invertible, and $Q^{-1}=Q^{T}$ Simple inverse
- $Q u \cdot Q v=u \cdot v$ for any u and v Q preserves dot projects
- $\|Q u\|=\|u\|$ for any u Q preserves norms

Normpreserving

Orthogonal Matrix

Orthogonal Matrix

- Let P and Q be $n \times n$ orthogonal matrices
- $\operatorname{det} Q= \pm 1$
- $P Q$ is an orthogonal matrix

Check by $(P Q)^{-1}=(P Q)^{T}$

- Q^{-1} is an orthogonal matrix Check by $\left(Q^{-1}\right)^{-1}=\left(Q^{-1}\right)^{T}$
- Q^{T} is an orthogonal matrix

Proof

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right]
$$

Orthogonal Operator

- Applying the properties of orthogonal matrices on orthogonal operators
- T is an orthogonal operator
- $T(u) \cdot T(v)=u \cdot v$ for all u and v
- $\|T(u)\|=\|u\|$ for all u

Preserves norms

- T and U are orthogonal operators, then $T U$ and T^{-1} are orthogonal operators.

Example: Find an orthogonal operator T on \mathscr{R}^{3} such that

$$
\begin{gathered}
T\left(\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \text { Norm-preserving } \\
v=\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right] \quad A v=e_{2} \quad v=A^{-1} e_{2} \quad \begin{array}{c}
\text { Find } A^{-1} \text { first } \\
\text { Because } A^{-1}=A^{T} \\
A^{-1}=\left[\begin{array}{ccc}
* & 1 / \sqrt{2} & * \\
* & 0 & * \\
* & 1 / \sqrt{2} & *
\end{array}\right] \quad \text { Also orthogonal } \\
4
\end{array} A^{-1}=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1 \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right] \\
{\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad A=\left(A^{-1}\right)^{T}}
\end{gathered}
$$

Conclusion

- Orthogonal Matrix (Operator)
- Columns and rows are orthogonal unit vectors
- Preserving norms, dot products
- Its inverse is equal its transpose

Outline

Orthogonal Matrices

- Reference: Chapter 7.5

Symmetric Matrices

- Reference: Chapter 7.6

Eigenvalues are real

－The eigenvalues for symmetric matrices are always real．

Consider 2×2 symmetric matrices

How about more general cases？

實係數多項式虛根共軛

$$
A=A^{T}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \in R^{2 \times 2}
$$

$$
\operatorname{det}\left(A-t I_{2}\right)=t^{2}-(a+c) t+a c-b^{2}
$$

$$
\text { Since }(a+c)^{2}-4\left(a c-b^{2}\right)=(a-c)^{2}+4 b^{2} \geq 0
$$

The symmetric matrices always have real eigenvalues．

Orthogonal Eigenvectors

$\operatorname{det}\left(A-t I_{n}\right)$ Factorization

A is symmetric

$=\left(t-\lambda_{1}\right) \xrightarrow{\underline{m_{1}}}\left(t-\lambda_{2}\right) \underline{\underline{m_{2}}} \ldots\left(t-\lambda_{k}\right) \xrightarrow{\underline{m_{k}}}(\ldots \ldots)$
Eigenvalue:

Orthogonal Eigenvectors

- A is symmetric.
- If u and v are eigenvectors corresponding to eigenvalues λ and $\mu(\lambda \neq \mu)$
u and v are orthogonal.

$=\mathbf{u} \cdot \mu \mathbf{v}$

Diagonalization

P is an orthogonal matrix
: simple
D is a diagonal matrix
$\mathrm{P}^{T} \mathrm{AP}=\mathrm{D} \quad \square \mathrm{P}^{-1} \mathrm{~A} P=\mathrm{D}$
$\mathrm{A}=\mathrm{PDP}^{-1}$
$\mathrm{A}=\mathrm{PDP}^{T}$
Diagonalization

P consists of eigenvectors, D are eigenvalues

Diagonalization

- Example

$$
A=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right]
$$

$$
\mathrm{A}=\mathrm{PDP}^{-1}
$$

$\mathrm{A}=\mathrm{PDP}^{T}$

$$
\mathrm{P}^{T} \mathrm{~A} P=\mathrm{D}
$$

A has eigenvalues $\lambda_{1}=6$ and $\lambda_{2}=1$,
with corresponding eigenspaces $\mathcal{E}_{1}=\operatorname{Span}\left\{\left[\begin{array}{lll}-1 & 2\end{array}\right]^{\top}\right\}$ and $\mathcal{E}_{2}=\operatorname{Span}\left\{\left[\begin{array}{ll}2 & 1\end{array}\right]^{\top}\right\}$
$\Rightarrow \mathscr{B}_{1}=\left\{\left[\begin{array}{ll}-1 & 2\end{array}\right]^{\top} / \sqrt{ } 5\right\}$ and $\mathscr{B}_{2}=\left\{\left[\begin{array}{ll}2 & 1\end{array}\right]^{\top} / \sqrt{ } 5\right\}$
orthogonal

$$
P=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
6 & 0 \\
0 & 1
\end{array}\right] \text {. }
$$

Example of Diagonalization of Symmetric Matrix

$$
A=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right] \quad \mathrm{A}=P \mathrm{DP}^{-1} \quad \mathrm{P}=\mathrm{PDP}^{T}
$$

$$
\lambda_{1}=2 \quad \text { Intendent } \quad \text { Gram- }
$$

$$
\lambda_{2}=8
$$

Eigenspace: Span
zation

Diagonalization

P is an orthogonal matrix

P consists of eigenvectors, D are eigenvalues
Finding an orthonormal basis consisting of eigenvectors of A

Diagonalization of

Symmetric Matrix $\quad u=c_{\downarrow} v_{1}+c_{l} v_{2}+\cdots+c_{l} v_{k}$
Orthonormal
basis

A is symmetric

Spectral Decomposition

Orthonormal basis

$A=P D P^{T} \quad$ Let $P=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}\end{array}\right]$ and $D=\operatorname{diag}\left[\begin{array}{llll}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n}\end{array}\right]$.
$=P\left[\begin{array}{lllll}\lambda_{1} & \mathbf{e}_{1} & \lambda_{2} & \mathbf{e}_{2} & \cdots\end{array} \lambda_{n} \mathbf{e}_{n}\right] P^{T}$
$=\left[\begin{array}{lllll}\lambda_{1} P \mathbf{e}_{1} & \lambda_{2} P \mathbf{e}_{2} & \cdots & \lambda_{n} P \mathbf{e}_{n}\end{array}\right] P^{T}$
$=\left[\begin{array}{llllll}\lambda_{1} \mathbf{u}_{1} & \lambda_{2} & \mathbf{u}_{2} & \cdots & \lambda_{n} \mathbf{u}_{n}\end{array}\right]\left[\begin{array}{c}\mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T}\end{array}\right] \begin{array}{lll}P_{1} & P_{2}\end{array}$
$=\lambda_{1} \mathrm{P}_{1}+\lambda_{2} \mathrm{P}_{2}+\cdots+\lambda_{n} \mathrm{P}_{n} \quad P_{i}$ are symmetric

Spectral Decomposition

Orthonormal basis

$$
\begin{aligned}
A & =P D P^{T} \text { Let } P=\left[u_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{n}\right] \text { and } D=\operatorname{diag}\left[\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right] . \\
& =\lambda_{1} \mathrm{P}_{1}+\lambda_{2} \mathrm{P}_{2}+\cdots+\lambda_{n} \mathrm{P}_{n}
\end{aligned}
$$

$$
\operatorname{rank} P_{i}=\operatorname{rank} \mathbf{u}_{i} \mathbf{u}_{i}^{T}=1
$$

$$
P_{i} P_{i}=\mathbf{u}_{i} \underline{\mathbf{u}_{i}^{T}} \mathbf{u}_{i} \mathbf{u}_{i}^{T}=\mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

$$
P_{i} P_{j}=\mathbf{u}_{i} \mathbf{u}_{i}^{T} \mathbf{u}_{j} \mathbf{u}_{j}^{T}=O
$$

$P_{i} \mathbf{u}_{i}$
$P_{i} \mathbf{u}_{j}$

Spectral Decomposition

- Example

$$
A=\left[\begin{array}{cc}
3 & -4 \\
-4 & -3
\end{array}\right] \quad \text { Find spectrum decomposition. }
$$

Eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=-5 . \quad P_{1}=u_{1} u_{1}^{T}$
An orthonormal basis consisting of eigenvectors of A is

$$
\begin{array}{rlr}
B=\left\{\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right],\left[\begin{array}{l}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]\right\} & P_{2}=u_{2} u_{2}^{T} \\
u_{1} u_{2} & A=\lambda_{1} P_{1}+\lambda_{2} P_{2}
\end{array}
$$

Conclusion

- Any symmetric matrix
- has only real eigenvalues
- has orthogonal eigenvectors.
- is always diagonalizable

A is symmetric
 $\mathrm{P}^{T} \mathrm{~A} P=\mathrm{D} \quad \mathrm{A}=P \mathrm{DP}^{T}$

P is an orthogonal matrix

Appendix

Diagonalization

- By induction on n.
- $n=1$ is obvious.
- Assume it holds for $n \geq 1$, and consider $A \in$ $\boldsymbol{R}^{(n+1) \times(n+1)}$.
- A has an eigenvector $\mathbf{b}_{1} \in \mathscr{R}^{n+1}$ corresponding to a real eigenvalue λ, so \exists an orthonormal basis $\mathfrak{B}=$ $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n+1}\right\}$
- by the Extension Theorem and Gram-

Schmidt Process.

$$
\begin{aligned}
B^{T} A B & =\left[\begin{array}{c}
\mathbf{b}_{1}^{T} \\
\mathbf{b}_{2}^{T} \\
\vdots \\
\mathbf{b}_{n+1}^{T}
\end{array}\right]\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{n+1}
\end{array}\right]=\left[\begin{array}{c|ccc}
\mathbf{b}_{1}^{T} A \mathbf{b}_{1} & \mathbf{b}_{1}^{T} A \mathbf{b}_{2} & \cdots & \mathbf{b}_{1}^{T} A \mathbf{b}_{n+1} \\
\hline \mathbf{b}_{2}^{T} A \mathbf{b}_{1} & \mathbf{b}_{2}^{T} A \mathbf{b}_{2} & \cdots & \mathbf{b}_{2}^{T} A \mathbf{b}_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{b}_{n+1}^{T} A \mathbf{b}_{1} & \mathbf{b}_{n+1}^{T} A \mathbf{b}_{2} & \cdots & \mathbf{b}_{n+1}^{T} A \mathbf{b}_{n+1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda & \mathbf{0}^{T} \\
\hline \mathbf{0} & S
\end{array}\right], \operatorname{since} \mathbf{b}_{1}^{T} A \mathbf{b}_{1}=\lambda \mathbf{b}_{1}^{T} \mathbf{b}_{1}=\lambda \operatorname{and} \mathbf{b}_{j}^{T} A \mathbf{b}_{1}=\mathbf{b}_{1}^{T} A \mathbf{b}_{j}=0 \forall j \neq 1 .
\end{aligned}
$$

$S=S^{T} \in \mathscr{R}^{n \times n} \Rightarrow \exists$ an orthogonal $C \in \mathcal{R}^{n \times n}$ and a diagonal $L \in \mathscr{R}^{n \times n}$ such that $C^{\top} S C=L$ by the induction hypothesis.

$$
\Rightarrow \underbrace{\left[\begin{array}{ll}
1 & \mathbf{0}^{T} \\
\mathbf{0} & C^{T}
\end{array}\right] B^{T}}_{\text {orthogonal } P^{T}} \underbrace{\left[\begin{array}{ll}
1 & \mathbf{0}^{T} \\
\mathbf{0} & C
\end{array}\right]}_{\text {orthogonal } P}=\left[\begin{array}{cc}
1 & \mathbf{0}^{T} \\
\mathbf{0} & C^{T}
\end{array}\right]\left[\begin{array}{cc}
\lambda & \mathbf{0}^{T} \\
\mathbf{0} & S
\end{array}\right]\left[\begin{array}{cc}
1 & \mathbf{0}^{T} \\
\mathbf{0} & C
\end{array}\right]=\left[\begin{array}{cc}
\lambda & \mathbf{0}^{T} \\
\mathbf{0} & C^{T} S C
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\lambda & \mathbf{0}^{T} \\
\mathbf{0} & L
\end{array}\right]}_{\text {diagonal } D}
$$

Example: reflection operator T about a line \mathcal{L} passing the origin.

Let the standard matrix of T be Q. Then $[T]_{\mathcal{B}}=P^{-1} Q P$, or $Q=$ $P[T]_{\mathcal{B}} P^{-1} \Rightarrow Q$ is an orthogonal matrix. $\Rightarrow T$ is an orthogonal operator.

